Индивидуальный риск 3 относится к транспорту. Методы оценки риска. Оценка производственного риска

Одной из наиболее часто употребляющихся характеристик опасности является индивидуальный риск - вероятность (частота) поражения отдельного индивидуума в результате воздействия исследуемых факторов опасности. Этот вид риска, которому подвергается индивидуальное лицо, рассматривается в качестве первичного понятия, во-первых, в связи с приоритетом человеческой жизни как высшей ценности и, во-вторых, в связи с тем, что именно индивидуальный риск может быть оценен по большим выборкам с достаточной степенью достоверности, что позволяет определять другие важные категории риска (например, потенциальный, территориальный) при анализе техногенных опасностей и осуществлять назначение приемлемого и неприемлемого уровня риска.

Коллективный риск - масштаб ожидаемых последствий для людей от потенциальных аварий. Фактически коллективный риск определяет ожидаемое количество смертельно травмированных в результате аварий на рассматриваемой территории за определенный период времени. Наиболее удобно пользоваться этим понятием для сравнения различных территорий хозяйственной деятельности, однако для разработки мер безопасности применение коллективного риска неэффективно, так как из анализа аварийности и травматизма выявлено, что основной ущерб от несчастных случаев, как результатов событий, зачастую не рассматривается.

Как индивидуальный, так и коллективный риски могут быть переведены в сферу экономических и финансовых категорий, если установить стоимость человеческой жизни и использовать математическое определение риска. Такой подход широко обсуждается, вызывая возражения определенного круга лиц, которые считают человеческую жизнь бесценной и все финансовые сделки на этой почве недопустимыми. Однако, на практике неизбежно возникает необходимость денежной оценки человеческой жизни именно с целью обеспечения безопасности людей. В большинстве промышленно развитых стран этот вопрос решается путем страхования индивидуальных рисков, в том числе фатальных.

Социальные риски - это риски, пронизывающие все общественные слои, группы, одни из которых выступают субъектами, а другие - объектами риска. Управлять ими можно на основе совместного, взаимовыгодного участия и согласованности интересов участников.

13. Оценка риска с использованием интервального анализа

Задачи с интервальными неопределенностями и неоднозначностями являются важнейшей сферой приложений интервального анализа, а само интервальное описание неопределенности - одним из наиболее популярных, наряду с нечетким (размытым) и вероятностным (стохастическим) описаниями. При этом может показаться, что интервальное описание неопределенности является наименее информативным среди других, наиболее «скупым» на детали, поскольку учитывает лишь границы возможных значений неизвестной величины. Но эта же «скупость» оборачивается «экономностью» интервальных моделей и большей развитостью математического аппарата для их исследования. К примеру, ни в теории нечетких множеств, ни в теории вероятностей не достигнуто той развитости методов решения систем уравнений с неопределенностями, как это имеет место для интервальных систем уравнений.

Большое разнообразие постановок задач с интервалами на входе доставляет идентификация в условиях неопределенности, когда данные об объекте, получаемые в результате измерений, либо каким-нибудь другим способом, не известны точно, но нам все равно требуется найти или как-то оценить параметры объекта.

Вплоть до конца прошлого века модели неопределенности, используемые при оценке параметров и идентификации, имели, главным образом, стохастический или вероятностный характер, основываясь на известных распределениях рассматриваемых величин и т.п. Но во многих практических ситуациях недостаточно информации для того, чтобы считать неопределенные факторы подчиняющимися какой-либо вероятностной модели (к примеру, отсутствует статистическая однородность результатов испытаний), либо эти факторы могут не удовлетворять тем или иным (часто весьма обременительным) условиям, которые на них налагает вероятностная модель неопределенности. Таковыми являются требования независимости исходных величин или специальный вид их распределений и т.п.

В настоящее время интервальное представление факторов неопределенности привлекает все большее внимание инженеров, как наименее ограничительное и наиболее адекватное многим практическим постановкам задач.

Задача оптимизации состоит, как известно, в нахождении наилучшего значения некоторой целевой функции на допустимом множестве, задаваемом обычно системой ограничений (уравнений и/или неравенств). Для решения задачи оптимизации в последние десятилетия было предложено большое количество подходов, каждый из которых имеет свои преимущества и недостатки. Тем не менее, общими чертами большинства из них являются

Локальный характер, и, как следствие, неспособность находить гарантированно глобальный оптимум целевой функции,

Гарантированные оценки точности полученных решений либо находятся подобными методами с большим трудом, либо не находятся вообще.

Методы глобальной оптимизации, основанные на применении интервального анализа, свободны от этих недостатков, так как способны исследовать целые куски области определения целевой функции, имеющие ненулевую меру. Более того, интервальные методы не теряют решений-оптимумов.

Интервальный тип данных и интервальная арифметика реализуются на современных ЭВМ, например, представлением интервала как пары чисел - одного для левого конца интервала, а другого для правого. При этом существующее аппаратное обеспечение, в частности, арифметика чисел с плавающей точкой, используются без каких-либо изменений, так как корректность получающейся интервальной арифметики может быть обеспечена так называемыми направленными округлениями. Например, там, где в задачах внешнего интервального оценивания в процессе вычислений требуется округление результата, нижняя граница интервала должна округляться вниз, а верхняя граница интервала - вверх. Таким образом, даже неизбежные ошибки округления при вычислениях с плавающей точкой будут строго и систематически учитываются в процессе выполнения интервальной программы.

В статистике интервальных данных (СИД) элементами выборки являются не числа, а интервалы, в частности, порожденные наложением ошибок измерения на значения случайных величин. Подробнее этот сравнительно новый, но весьма перспективный раздел эконометрики рассмотрим в главе 9. Здесь дадим лишь общее представление о статистике интервальных данных в сравнении с классической математической статистикой. Прежде всего отметим, что СИД входит в теорию устойчивости (робастности) статистических процедур и примыкает к интервальной математике. В СИД изучены практически все задачи классической прикладной математической статистики, в частности, задачи регрессионного анализа, планирования эксперимента, сравнения альтернатив и принятия решений в условиях интервальной неопределенности и др. Основная идея СИД является общеинженерной - каждая величина должна приводиться вместе с погрешностью ее определения. К сожалению, эта идея еще не стала общеэкономической.

Рассмотрим развитие в течение последних 15 лет асимптотических методов статистического анализа интервальных данных при больших объемах выборок и малых погрешностях измерений. В отличие от классической математической статистики, сначала устремляется к бесконечности объем выборки и только потом - уменьшаются до нуля погрешности. Разработана общая схема исследования, включающая расчет двух основных характеристик - нотны (максимально возможного отклонения статистики, вызванного интервальностью исходных данных) и рационального объема выборки (превышение которого не дает существенного повышения точности оценивания и статистических выводов, связанных с проверкой гипотез). Она применена к оцениванию математического ожидания и дисперсии, медианы и коэффициента вариации, параметров гамма-распределения и характеристик аддитивных статистик, для проверки гипотез о параметрах нормального распределения, в т.ч. с помощью критерия Стьюдента, а также гипотезы однородности двух выборок по критерию Смирнова, и т.д. Разработаны подходы к учету интервальной неопределенности в основных постановках регрессионного, дискриминантного и кластерного анализов.

Многие утверждения СИД отличаются от аналогов из классической математической статистики. В частности, не существует состоятельных оценок: средний квадрат ошибки оценки, как правило, асимптотически равен сумме дисперсии этой оценки, рассчитанной согласно классической теории, и квадрата нотны. Метод моментов иногда оказывается точнее метода максимального правдоподобия. Нецелесообразно с целью повышения точности выводов увеличивать объем выборки сверх некоторого предела. В СИД классические доверительные интервалы должны быть расширены вправо и влево на величину нотны, и длина их не стремится к 0 при росте объема выборки. СИД позволяет снять некоторые противоречия между метрологией и классической математической статистикой. Например, вторая из названных дисциплин утверждает, что путем увеличения числа измерений можно сколь угодно точно оценить параметр, а первая вполне справедливо оспаривает это утверждение. Результаты СИД уточняют интуитивные представления метрологов (которые сосредотачивались, впрочем, вокруг весьма частного с точки зрения эконометрики вопроса - оценивания математического ожидания) и развенчивают "гордыню" математической статистики. (за точность этого вопроса не отвечаю пардон заранее)))

Различают индивидуальный и социальный риск.

Индивидуальный риск характеризует опасность определенного вида для отдельного индивидуума.

Социальный (точнее — групповой) — это риск для группы людей.

Социальный риск — это зависимость между частотой событий и числом пораженных при этом людей (см. рис.).

Восприятие риска и опасностей общественностью субъективно. Люди резко реагируют на события редкие, сопровождающиеся большим числом единовременных жертв. В то же время частые события, в результате которых погибают единицы или небольшие группы людей, не вызывают столь напряженного отношения.

Ежедневно на производстве погибает 40…50 человек, a в целом по стране от различных опасностей лишаются жизни более 1000 человек. Но эти сведения менее впечатляют, чем гибель 5-10 человек в одной аварии или каком-либо конфликте.

Это необходимо иметь ввиду при рассмотрении проблемы приемлемого риска.

Субъективность в оценке риска подтверждает необходимость поиска приемов и методологи, лишенных этого недостатка.

По мнению специалистов, использование риска в качестве оценки опасностей является предпочтительнее, чем использование трофитопных показателей.

Основные положения теории риска.

В сентябре 1990 г. в г. Кельне состоялся Первый Всемирный конгресс по безопасности деятельности, как научной дисциплине, проходивший, под девизом “Жизнь в безопасности”. Специалисты из разных стран в своих сообщениях и докладах постоянно оперировали понятием «риск».

В советской технической литературе по безопасности это понятие пока не получило соответствующего признания.

В. Маршалл дает следующее определение: риск — частота реализации опасностей.

Наиболее общим определением признается такое: риск — это количественная оценка опасности.

Количественная оценка — это отношение числа тех или иных неблагоприятных последствий к их возможному числу за определенный период. Определяя риск необходимо указать класс последствий, т.е. ответить на вопрос: риск чего?

Формально риск — это частота. Но пo-существу между этими понятиями имеет место существенная разница, т.к. примени­тельно к проблемам безопасности о возможном числе неблагоприятных последствий приходится говорить с известной долей условности.

Прежде чем перейти к рассмотрению других аспектов проб­лемы риска, приведем примеры. В качестве примера приведем зарубежные данные, характери­зующие индивидуальный риск.

Индивидуальный риск фатального исхода в год, обусловленный, различными причинами (по данным, относящимся ко всему населению США)

Автомобильный транспорт 3*10 -4
Падения 9*10 -5
Пожар и ожог 4*10 -5
Утопление 3*10 -5

Отравление 2*10 -5
Огнестрельное оружие 1*10 -5

Станочное оборудование 1*10 -5
Водный транспорт 9*10 -6

Воздушный транспорт 9*10 -6

Падающие предметы 6*10 -6

Электрический ток 6*10 -6

Железная дорога 4*10 -6

Молния 5*10 -7

Все прочие 4*10 -5

Общий риск 6*10 -4

Ядерная энергия (100 реакторов) 2*10 -10

Уровнем опасности можно управлять. Для этого введено понятие риска.

Риск – это количественная мера опасности или частота реализации опас­ности, вероятность возникновения одного события при наступлении другого. Риск это безразмерная величина от 0 до 1.

R=п/N, (2.1)

где R – риск;

п – количество неблагоприятных последствий за год;

N – максимально возможное число неблагоприятных последствий за год.

Принято различать риск индивидуальный и общий.

Индивидуальный риск – это ожидаемое значение ущерба человеку за ин­тервал времени Г и отнесённое к группе людей численностью М человек.

Индивидуальный риск характеризует опасность определённого вида для отдельного индивидуума. Его можно рассчитать по формуле

где Т – период времени, лет:

У ожидаемое значение ущерба;

М – численность групп людей, чел.

Общий риск – это риск для группы людей или, иными словами, коллек­тивный риск.

Общий риск рассчитывается по формуле

R общ =У/Т (2.3)

В табл. 2.1 приведены значения риска летальных исходов в год от дейст­вия негативных факторов.

Таблица 2.1 – Риск летальных исходов

Абсолютной безопасности в мире не существует. Сохраняется потенци­альная опасность, остаточный риск. В современном мире принята концепция приемлемого (допустимого) риска – стремление к такой малой безопасности, которую приемлет общество в данный период времени. Количественно прием­лемый риск гибели в большинстве стран равен 10 -6 .

На рис. 2.1 показан пример определения приемлемого риска. При увеличе­нии затрат на безопасность технический риск снижается, а социальный - растёт.

Рис. 2.1. Определение приемлемого риска

Производственный риск – это совершение действий, которые могут привес­ти к несчастным случаям. Риском могут быть ошибочные действия или бездея­тельность, создающие обстановку, когда произойдет авария или гибель людей.

Снижения производственного риска можно добиться совершенствовани­ем системы безопасности, подготовкой и обучением персонала, различными организационными мероприятиями, применением технических и индивидуальных мер защиты работающих, а также экономическими методами, например, льготами, компенсациями, страхованием и т.п.

Для производственных условий выделяют следующие категории опасно­сти: условно безопасная категория (R<10 -4), относительно безопасная (R от 10 -4 до 10 -3), опасная (R от 10 -3 до 10 -2), особо опасная (R>10 -2).

Одна из важнейших мер защиты от опасностей – анализ уже случившихся аварий. Методы определения риска представлены схемой на рис. 2.2.

Анализ риска, обусловленного наличием источника вредного действия, состоит из этапа оценки риска и этапа управления риском.

Этап оценки сопровождается исследованиями, в результате которых ус­танавливают, какие последствия вызывают разные дозы вредного фактора и в разных условиях. На этапе управления риском анализируют разные альтерна­тивы и выбирают наиболее подходящие.

В основе управления риском лежит методика сравнения затрат и полу­чаемых выгод от снижения риска.



Рис. 2.2 Методы определения риска

Решение. Рассчитаем риск по формуле (2.1)

R =4,35 ∙ 10 4 / 1,45-10 8 = 3∙10 4

Вывод . Риск гибели в ДТП для человека составляет 3∙10 4 .

R =8 10 3 /8 ∙10 7 = 1∙10 -4

Вывод. Риск гибели в производственной сфере для человека составляет 1∙10 -4 .

Известно, что вероятность летального исхода при различных видах про-

фессиональной деятельности составляет (0,2 – 3)·10 -7 чел/ч, в среднем – 0,7·10 -7 чел/ч, при занятиях домашним хозяйством – 0,5·10 -7 чел/ч.

Помимо индивидуального, различают также социальный риск, который характеризует вероятность поражения определенного числа людей при реализации той или иной опасности. Он определяет масштаб катастрофичности опасности.

В практических целях, в частности для обоснования профилактических мероприятий, важно знать фактические и расчетные (прогнозируемые) значения рисков. Фактические значения различных рисков могут быть вычислены по статистическим данным о несчастных случаях, заболеваниях, авариях, пожарах, стихийных бедствиях. Если в какой-либо стране от всех видов опасностей погибло C человек, а все население составляло H , то индивидуальный риск гибели R общ от всех опасностей составит

R общ = X / H. (1.1)

Если рассматривать, только производственную деятельность, то риск гибели на производстве будет

R пр = X пр / P, (1.2)

гдеX пр – число погибших во всех отраслях народного хозяйства; P – общее число работников.

Важно отметить, что R пр обычно значительно меньше R общ.

Для отдельных отраслей экономики имеем

R отр = X отр / P отр, (1.3)

где X отр и P отр соответственно число погибших и число работников в рассматриваемой отрасли.

Основываясь на значениях R общ, R пр, R отр , можно решать многие вопросы управления безопасностью жизнедеятельности: обосновывать объемы ассигнований на цели повышения безопасности, устанавливать уровень требований безопасности через соответствующие нормативные правовые акты (стандарты, правила, нормы), размеры страховых ставок при страховании работников от несчастных случаев на производстве и профессиональных заболеваний. Вместе с тем наиболее эффективное управление риском достигается через изменения, вносимые в технику и технологии на стадии разработки соответствующей проектной документации. Для установления содержания этих изменений риск должен быть выражен через конкретные технико-технологические характеристики объекта или процесса, т.е. требуется получить математическую модель прогнозирования риска. Подобные модели строят с использованием принципа декомпозиции, согласно которому сложный объект или процесс делят на операции, а операции – на элементарные действия. Такой подход вызван тем, что только на уровне элементарного действия (или элементарного узла машины) риск может быть выражен через соответствующие технические характеристики изучаемой системы. Однако при этом необходимо обязательно принять какую-либо модель реализации риска и уточнить его вид. Как наиболее нежелательный вид реализации риска может быть принят несчастный случай (НС). Для многих процессов типичная последовательность событий, ведущих к НС, включает: появление травмоопасной ситуации (ПТС) ® нахождение человека в опасной зоне (НОЗ) ® попадание травмирующего фактора (ПТФ) ® отказ средств защиты (ОСЗ). Таким образом, риск R ij (Д) на уровне действия (Д) определяется как

R ij (Д) = P ij (ПТС) " P ij (НОЗ) " P ij (ПТФ) " P ij (ОСЗ), (1.4)

где P ij (ПТС), P ij (НОЗ), P ij (ПТФ), P ij (ОСЗ) - вероятности соответственно ПТС, НОЗ, ПТФ, ОСЗ. Именно эти вероятности во многих случаях удается выразить через технико-технологические характеристики изучаемого объекта или процесса.

Если предположить, что исследуемый процесс состоит из n операций, а каждая операция из m i действий, то с учетом независимости событий, связанных с воздействием опасных факторов на человека в разных действиях и при разных операциях получаем

R i (О) = , (1.5)

R(П) = , (1.6)

где R i (O) - риск, возникающий при выполнении i -й операции; m i – число действий в i -й операции; R(П) – риск, относящийся к процессу в целом; n – число операций, из которых состоит изучаемый процесс.

Реальные технологические процессы характеризуются повторяющимися циклами, например, изготовление деталей, кормление животных, техническое обслуживание машин. Поэтому расчеты риска делаются на один цикл. Если же в течение единицы времени (таковой может быть час, смена или даже год) выполняется N циклов, то величина риска будет

R = 1 - N . (1.7)

В предположении, что число циклов N в формуле (1.7) относится к одному году, величина R будет представлять годовой индивидуальный риск. Его величина должна быть не более 1"10 -6 . Если это условие не выполняется, то в проект должны быть внесены необходимые усовершенствования.

Расчеты рисков могут быть выполнены и по отдельным опасным и вредным факторам. В частности, риск R(ИИ) раковых заболеваний при действии ионизирующих излучений (ИИ ) и при принятии беспороговой концепции действия этих излучений на организм может быть оценен как

R(ИИ) = k " H, (1.8)

где k – коэффициент пропорциональности равный 1,25"10 -2 ; H – эквивалентная поглощенная доза, Зв.

При действии повышенного шума возникает риск R(L A) стойкой утраты слуховой чувствительности. Он зависит от продолжительности воздействия повышенного шума и его уровня L A , дБА. Для времени воздействия шума, соответствующем пяти годам, получено выражение

R(L A) = (197,7 – 4,87"L A + 0.03"L )/100 (1.9)

Риск R(a экв ) сосудистых расстройств при воздействии локальной вибрации, передающейся на руки человека, согласно ИСО 5349 равен

R(a экв) = / 95, (1.10)

где а экв(8) – эквивалентное корректированное значение виброускорения при длительности воздействия локальной вибрации в течение смены – 8 ч; Т – продолжительностью работы в виброопасных условиях, лет. Выражение (1.10) не может применяться, если значения Т лежат вне диапазона (1-25) лет, а значения R(a экв) – (0,10-0,50).

Риск землетрясений может быть определен в соответствии с моделью

P(N,t) = (l"t) N exp(-lt/N!), (1.11)

где P(N,t) – вероятность возникновения N землетрясений в течение временного интервала t ; l - среднее число землетрясений в единицу времени, получаемое по данным статистики.

Риск эпидемического заболевания R э (t) приближенно оценивается по выражению

R э (t) = (Q + 1) / { Q}, (1.12)

где Q – численность контингента здоровых людей, в который попадает заболевший человек, a - коэффициент пропорциональности, устанавливаемый для каждого вида болезнетворных микробов и условий распространения эпидемии; t – момент времени от начала развития эпидемии.

Классификация опасностей . Номенклатура опасностей меняется в ходе научно-технического развития, которое нередко порождает неизвестные ранее опасности. По природе происхождения опасности делят на техногенные, антропогенные, социальные, природные; по локализации – на связанные с литосферой, гидросферой, атмосферой и космосом. По вызываемым последствиям опасности могут быть связаны с заболеваниями, гибелью и травмами людей и животных, гибелью и заболеваниями растений, пожарами, авариями, наводнениями, засухами и т.п. В зависимости от вида деятельности опасности могут быть производственными, дорожно-транспортными, бытовыми, спортивными, военными. По характеру воздействия опасности делят на пассивные и активные. Пассивные опасности отличаются тем, что их активизирует сам человек за счет своей энергии – торчащие гвозди, другие острые, колющие предметы, неровности поверхностей, крутые подъемы, уклоны, незащищенные перепады по высоте. Активные опасности воздействуют на людей самостоятельно – ударная волна, световое излучение ядерного взрыва, шумы высокого уровня, ионизирующие излучения и др.

По времени проявления отрицательных последствий опасности могут быть импульсивного действия (неблагоприятные последствия проявляются немедленно) и кумулятивного действия (неблагоприятные последствия накапливаются в организме, приводя его в конечном итоге в патологическое состояние). Импульсивное действие характерно для электрического тока, ударных шумов. Кумулятивное действие характерно для ионизирующих излучений, повышенного шума, недостаточной освещенности и ряда других опасностей. В зависимости от уровня или интенсивности одна и та же по наименованию опасность может обладать и кумулятивным и импульсивным действием на организм.

С учетом материальной сущности (материальной природы носителей опасности) они могут быть разделены на физические, механические, химические, биологические.

Номенклатура или перечень опасностей могут быть общими, отраслевыми, местными, т.е. относится к одному какому-либо объекту или даже одному рабочему месту. Весьма подробную номенклатуру опасностей составил О.Н. Русак (1996). В неё, в частности, вошли: автомобиль, алкоголь, анормальные температуры воздуха и воды, вулканы, искры, качка, котел, метеориты, огонь, оружие, пестициды, повышенные уровни излучений, скользкая поверхность, снегопад, шум, физические перегрузки, эмоциональный стресс, ядовитые вещества и др.

В Системе стандартов безопасности труда (ССБТ) под опасностями понимаются опасные и вредные производственные факторы (ОВПФ). ОПФ – это факторы, которые ведут к травмам, ВПФ – к заболеваемости (при условии воздействия на работника).

Все ОВПФ согласно ГОСТ 12.0.003 делят на четыре группы: физические, химические, биологические и психофизиологические. Физические ОВПФ включают: движущиеся машины и механизмы; подвижные незащищенные элементы оборудования (валы, передачи, муфты и т.п.); передвигающиеся изделия, заготовки, материалы, разрушающиеся конструкции, обрушивающиеся горные породы (или водные массы), качка; повышенная запыленность, загазованность воздуха; повышенные уровни шумов, вибраций, излучений, ультра- и инфразвука, яркости света; повышенная или пониженная температура, относительная влажность и подвижность воздуха, барометрическое давление; повышенное значение напряжения в электрических цепях, которые могут замыкаться через тело человека; острые кромки, заусенцы на поверхностях оборудования, заготовок и инструмента; расположение рабочих мест на высоте.

Химические ОВПФ включают токсические, раздражающие, сенсибилизирующие, канцерогенные, мутагенные вредные вещества, а также вещества, влияющие на репродуктивную функцию.

К биологическим ОВПФ относят патогенные микроорганизмы (бактерии, вирусы, риккетсии, спирохеты, грибы, простейшие) и продукты их жизнедеятельности, а также опасные и вредные макроорганизмы и растения.

Психофизиологические ОВПФ подразделяют на физические перегрузки (динамические, измеряемые в Дж, и статические, измеряемые в H"с) и нервно-психические перегрузки (умственное перенапряжение, перенапряжение анализаторов, монотонность труда, эмоциональные перегрузки).

Важно подчеркнуть, что ОВПФ возникают в том случае, если какие-либо факторы условий труда (или факторы рабочей среды) отклоняются от требований действующих стандартов, норм и правил в неблагоприятную для человека сторону.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. ОПРЕДЕЛЕНИЕ ИНДИВИДУАЛЬНОГО РИСКА

С математической точки зрения индивидуальный риск определяется как произведение вероятности гибели человека, находится в данном регионе, от возможных источников опасности в течение года и вероятности ее пребывания в зоне поражения.

Индивидуальный риск рассматривают как основное понятие, во-первых, в связи с приоритетностью человеческой жизни как высшей ценности, во-вторых, в связи с тем, что именно индивидуальный риск может быть оценен за большими выборками с достаточным уровнем достоверности, что позволяет определить другие важные категории риска при анализе опасностей и устанавливать приемлемые и неприемлемые уровни риск.

В общем случае количественно индивидуальный риск выражается отношением числа пострадавших людей по какой-то причине к общему числу людей, которые рискуют за определенный период времени.

При расчете распределения риска по территории вокруг объекта (картирование риска) индивидуальный риск определяется потенциальным территориальным риском и вероятностью пребывания человека в районе возможного действия опасных факторов.

В общем случае индивидуальный риск от некоторой опасности, рассчитывается для определенной территории исследования, характеризуются вероятностью гибели отдельной личности с населения за период времени 1 год к Так, если есть достаточно статистических данных, то оценку индивидуального риска (Ш) можно получить по формуле

где п - количество за год по определенной причине, N - численность населения на исследуемой территории в оцениваемом году

Трактовать понятие индивидуальный риск надо с учетом конкретных видов деятельности и статистических данных по несчастным (смертельных) случаев за определенный период времени, возникшие в результате этой деятельности. Например, если специалисты определили, что индивидуальный риск для пассажиров гражданской авиации составляет 1 * 10 -5 (1/год), то в статистическом плане это означает, что следует ожидать один смертельный случай в результате несчастного случая, связанного с отказом самолета, на 100 тысяч пассажиров в год.

В любом районе, где проживает население, независимо от наличия или отсутствия каких-либо техногенных объектов всегда существует некоторая вероятность того, что человек погибнет в результате несчастного случая в быту, преступного нападения или другой неестественной события Среднегодовое значение риска для конкретного человека зависит от источников опасности и времени их влияния.

В большинстве стран мира статистические данные об индивидуальных или коллективных рисках от различных несчастных случаев систематически собираются и публикуются

Значение индивидуального риска разделены на 3 категории: 1-бытовые риски (риски, которым подвергается каждый житель страны независимо от профессии и образа жизни), 2 - профессиональные риски (риски, связанные и с профессией человека) 3 - добровольные риски (риски, касающиеся личной жизни, в частности непрофессиональные занятия альпинизмом, прыжки с парашютом и т.д.); добровольные риски можно рассматривать как собственности ни интересы и плату за удовольствие. Заметим, что наибольшие риски в категории 1 связаны с болезнями, за ними следуют несчастные случаи; в категории 2 - работа на морских платформах; в категории 3 - занятие альпинизмом.

Профессиональные риски реализуются в условиях нарушения технологического режима на ПНО, на которых оборудование достигло предела износа, вследствие ошибок персонала и т.д. Любой - какая технология несет определенный риск как к для человека, так и для окружающей среды. Однако человек может выбрать, работать в условиях повышенного риска, или найти себе другую роботу.

Аналогично бытовые риски также являются добровольными. Определены индивидуальные риски несчастных случаев: убийств, самоубийств, отравлений, заболеваний, потери трудоспособности в Украине. Так, индивидуальный риск смертности от несчастных случаев, связанных с транспортными средствами, по состоянию на 2005 г составлял 2,06-1-10 -4 , а риск смертности от группы различных отравлений, в том числе алкоголем, - 2,83 10 - 4 , риск самоубийств - 2,25 10 -4 , риск погибнуть от огня и пламени - 5,8 10 - 5 Как видим, риск смертности населения от несчастных случаев в быту очень высокий Особое беспокойство вызывает риск смертности вследствие различных отравлений и самоубийств, поскольку они имеют наибольшие значение среди других причин несчастных случаев.

Индивидуальный риск во многом определяется квалификацией и готовностью индивидуума к действиям в опасной ситуации, его защищенностью. Индивидуальный риск, как правило, следует определять не для каждого человека, а для групп людей, которые примерно одинаковое время находятся в различных опасных зонах и имеют одинаковые средства защиты. Рекомендуется оценивать индивидуальный риск отдельно для персонала объекта и для населения прилегающей территории.

2. КОЛЛЕКТИВНЫЙ РИСК

С усложнением задач управления большими системами выработка решений все чаще перекладывается с одного человека на группу лиц. Решение становится коллективным, коллегиальным.

Решения, связанные с риском, как правило, особо ответственны. Поэтому здесь роль группового выбора весьма велика. Ответственность, однако, далеко не единственная причина, по которой приходится прибегать к коллективным решениям. Групповой выбор в ряде случаев оказывается менее субъективным.

Вот простой пример. Если группе людей показать обыкновенный карандаш и попросить оценить на глаз его длину в миллиметрах, каждый, естественно, назовет свою цифру, причем цифры эти окажутся в большинстве весьма далекими друг от друга, а, следовательно, далекими и от истинного размера карандаша (истинная длина у него одна). Если, однако, сложить названные цифры и разделить сумму на число опрошенных, окажется, что полученная средняя арифметическая величина близка к истине. Субъективные случайные ошибки измерений противоположного знака при сложении взаимно уничтожились, и групповая оценка оказалась более достоверной, чем большинство индивидуальных.

Выработка решения в коллективе, помимо указанных преимуществ, дает также возможность выявить больше альтернатив, всесторонне оценить многочисленные варианты, выбрать из них лучшие и устранить слабые.

Существенным недостатком коллективного решения является его сравнительно низкая оперативность: выработка такого решения требует значительного времени.

Примером групповых решений могут быть многие проектные решения, решения, принимаемые демократическим путем во всевозможных научно-производственных совещаниях, конференциях и т.п. Что касается предприятия, то даже и в условиях единоначалия, в выработке и принятии решения в той или иной степени участвуют начальники основных отделов, главный бухгалтер, ведущие специалисты.

В приведенных примерах речь идет о выработке коллективных решений так называемой малой группой. В литературе по психологии под малой группой характерных черт, общей целью, непосредственным взаимодействием членов группы, общими нормами поведения, определенной структурой. Группа перестает считаться малой, если хотя бы один из названных признаков выпадает. Скажем, число группы становится столь велико, что непосредственное взаимодействие между ними оказывается невозможным.

И чрезвычайный интерес представляет ответ на вопрос: в какой мере групповое решение, в т.ч. и решение, связанное с риском, отличается по качеству от индивидуального? Становится ли оно более рациональным или наоборот. Чтобы разобраться в этом, необходимо проанализировать работу группы, вырабатывающей решение, с учетом трех главных факторов, характера решаемой задачи, характеристики группы, процедуры деятельности группы.

По характеру задачи, решаемых группой, могут быть детерминированные и вероятностные, статистические и динамические, в условиях определенности данных обстановки (с полной информацией) и неопределенности (с риском), и т.д. Какие из этих задач в группе решаются лучше, чем индивидуально?

Группа лиц, вырабатывающих решение, характеризуется количеством участников, их компетентностью, мотивами действий и т.д. Как эти параметры влияют на качество решений, какой состав группы является оптимальным?

С точки зрения процедуры коллективные решения могут приниматься в соответствии с формальными методами, по строгому алгоритму, а могут быть приняты и неформально, в результате свободного обсуждения, какой путь лучше? Существо принятия решения в группе заключается в переходе от индивидуальных решений, принимаемых каждым ее членом, к коллективным, выражающим точку зрения группы в целом.

3. ХАРАКТЕРИСТИКА ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ ВОЗНИКАЮЩИХ В ВОЕННОЕ ВРЕМЯ

ЧС социально-политического характера, связанные с противоправными действиями террористического и антиконституционного характера:

осуществление или реальная угроза террористического акта (вооруженное нападение, захват и удержание важных объектов, ядерных установок и материалов, систем связи и телекоммуникаций, нападение или покушение на экипаж воздушного или морского судна);

угон (или попытка угона) или уничтожение суден;

захват заложников;

установление взрывчатых устройств в общественных местах;

обнаружение застарелых боеприпасов и др.

ЧС военного характера, связанные с последствиями применения оружия массового поражения или обычных средств поражения, во время которых возникают вторичные факторы поражения населения вследствие разрушения:

атомных и гидроэлектростанций;

ск ладов и захоронений радиоактивных и токсичных веществ и отходов;

нефтепродуктов :

взрывчатых веществ;

транспортны х и инженерных коммуникаций.

в) по числу пострадавших :

малые - пострадавших 25-100 человек, из которых 10-15 нуждаются в госпитализации,

средние - соответственно 101-1000 и 51-250,

большие - 1000 и более, более 250.

4. ОСНОВНЫЕ ПОРАЖАЮЩИЕ ФАКТОРЫ И ПОРАЖЕНИЯ ЛЮДЕЙ В ЧС

Разрушительная сила техногенных катастроф стихийных бедствий в ряде случаев сопоставима с военными действиями, а количество пострадавших зависит от типа, масштабов, места и темпа развития ЧС, особенностей региона.

Основные поражающие факторы в ЧС.

динамические (механическое воздействие на организм взрывной волны, метательные действия, вторичные снаряды, падение с высоты, придавливание тяжёлыми предметами),

термические воздействия (высокие или низкие температуры, лучистая энергия),

электрический ток , молния,

радиационное излучения ,

химические - вредные вещества (СДЯВ, ОВ, бытовые химикалии, лекарства и др.),

биологические ,

психогенный фактор (психоневрологический стресс, шок, оглушённость и др.)

При угрозе или воздействии на организм человека указанных факторов для спасения жизни и предупреждения неблагоприятных осложнений необходимо:

предупредить возникновение и воздействие поражающих факторов,

организовать защиту человека от воздействия поражающих факторов,

оказать экстренную медицинскую помощь пострадавшим. Экстренная медицинская помощь(ЭМП) - это помощь, которая оказывается пострадавшим в кратчайшие сроки при угрозе жизни и здоровью.

Это соответствует международному принципу Гражданской Обороны

5. ОШИБОЧНЫЕ ДЕЙСТВИЯ. ПРИЧИНЫ

индивидуальный риск чрезвычайный травматизм

Безопасность труда является основной гарантией стабильности и качества производства. Отсутствие несчастных случаев часто отражается на профессиональной активности рабочих, на моральном климате в коллективе, а значит на эффективности и продуктивности труда, значительно сокращает расходы предприятия. Однако риск гибели и травматизма работников на предприятиях Украины остается выше, чем в развитых странах мира, поэтому проблема производственного травматизма является актуальной для большинства предприятий.

Решение проблемы невозможно без установления причин. Тяжелые условия труда, необразованность и неосведомленность кадров, нарушение трудовых прав граждан, гарантированных Конституцией Украины, несоблюдение минимальных социальных гарантий в сфере безопасности и охраны труда, ненадлежащее состояние здравоохранения работников, нарушение законодательства о труде, касающегося детей и женщин - все это причины высокого уровня производственного травматизма.

Причины производственного травматизма можно классифицировать следующим образом. Технические причины можно охарактеризовать как причины, зависящие от уровня организации труда на производстве. К ним относятся: несовершенный технологический процесс, конструктивные недостатки оборудования, инструментов и приспособлений, недостаточная механизация тяжелых работ; отсутствие специальных защитных средств, средств сигнализации и блокировок, недостаточная прочность и надежность машин, вредные свойства обрабатываемого материала, наличие оборудования, которое отработало нормативный срок эксплуатации и др. Они являются достаточно распространенными на предприятиях Украины. Их доля по данным фонда социального страхования от несчастных случаев на производстве и профессиональных заболеваний Украины составляет 17,9 % от общего числа производственного травматизма.

Организационные причины, полностью зависят от уровня организации труда на производстве. К ним можно отнести: неудовлетворительное состояние территории, проездов, проходов, нарушение правил эксплуатации оборудования, транспортных средств, нарушение технологического регламента, нарушение правил и норм при транспортировке, сборке и хранении материалов и деталей, нарушение норм и правил при плановом техническом обслуживании и ремонте оборудования, транспортных средств и инструмента; недостатки при обучении рабочих безопасным методам труда; недостаточный технический надзор за опасными работами; использования машин, механизмов и инструмента не по назначению; отсутствие или неудовлетворительное ограждение рабочей зоны; отсутствие или неиспользование средств индивидуальной защиты и т.д. Организационные причины в большой степени зависят от охраны труда, дисциплины самого работника. Каждый работник должен пройти профосмотр и предварительный инструктаж, ознакомится с должностной инструкцией и, соответственно, не нарушать ее. В свою очередь предприятие должно качественно разработать инструкцию по охране труда. Согласно данным Фонда социального страхования от несчастных случаев на производстве и профессиональных заболеваний Украины организационные причины преобладают среди всех причин производственного травматизма (65,7 %).

Психофизиологические причины - ошибки в действиях, связанные с физиологическим (усталость), психическим (повышенная раздражительность) или болезненным состоянием работников. Человек может допускать ошибки в своих действиях вследствие физических, статических или динамических перегрузок, умственного перенапряжения, перенапряжения анализаторов (зрительного, слухового, тактильного), монотонности работы, стрессовых ситуаций, болезненного состояния, напряженного психологического климата в коллективе и др. Травму может вызвать неудовлетворительность анатомо-физиологических и психических особенностей организма человека в зависимости от характера выполняемой работы. В современных сложных технических системах управления, в конструкциях машин, приборов и систем управления еще недостаточно учитываются физиологические и антропологические особенности и возможности человека. Неудовлетворительная организация труда обусловливает чрезмерные физические и нервные перегрузки, что ускоряет утомляемость рабочих. В таком состоянии снижается чувствительность к различным раздражителям производственной среды, притупляется внимание, бдительность. Это приводит к тому, что ближе к концу рабочей смены резко повышается количество несчастных случаев, причинами которых являются ошибочные действия потерпевших. Личные качества сотрудников (скорость реакции, активность, ответственность, дисциплинированность и т.д.) также влияют на их склонность к несчастным случаям. Это указывает, что личные качества пострадавших значительно влияют на тот факт, что в похожих экстремальных ситуациях одни становятся жертвами несчастных случаев, а вторые - нет. По данным Фонда социального страхования от несчастных случаев на производстве и профессиональных заболеваний Украины психофизиологические причины составляют 16,4 % от общей численности травматизма на предприятиях Украины.

Также значительными являются санитарно-гигиенические причины, к которым можно отнести: превышение (относительно) запыленности и загазованности воздуха рабочей зоны; отсутствие или недостаточное естественное освещение, повышенную пульсацию светового потока; повышенный уровень шума и вибрации, инфразвуковых и ультразвуковых колебаний на рабочем месте; повышенный уровень ультразвуковой и инфракрасной радиации и др.

По мнению МОТ, для предотвращения или снижения числа несчастных случаев и заболеваний, связанных с трудовой деятельностью, необходимы усилия на международном, региональном, национальном уровне, а также на уровне предприятий. Несомненно, необходима законотворческая деятельность, соблюдение законов, проверки законов на соответствие международным нормам, а также развития потенциала служб охраны труда. Должны проводиться мероприятия, направленных на обучение и повышение квалификации работников, оснащение средствами индивидуальной защиты, усиление контроля по всем направлениям охраны труда, стимулирование работников за работу без нарушений правил охраны труда.

Исходя из вышеизложенного, на предприятии можно выделить приоритетные направления деятельности по профилактике производственного травматизма:

- выявление возможностей возникновения опасных ситуаций на производстве, их профилактика, ознакомление работающих со способами их избегания и устранения;

- проведение агитационной и разъяснительной работы по осознанию работниками сущности, условий и обстоятельств возникновения опасных ситуаций на производстве, применение мер административного и материального воздействия к нарушителям правил безопасного производства работ;

- обучение рабочих и управляющих всех уровней правилам безопасного производства, умению вовремя распознать возможность возникновения опасной ситуации;

- исследование несчастных случаев, профзаболеваний и аварий на производстве, разработка и внедрение мероприятий для предотвращения их повторения;

- внедрение международных способов профилактики травматизма и профзаболеваний

Сужение и расширение сосудов осуществляется рефлекторным путем.

На существование сосудорасширяющих нервных волокон с большей убедительностью, чем морфологические данные и построения, указывают некоторые физиологические наблюдения и эксперименты. Морфологически же наличие в стенке сосудов сосудосуживающих и сосудорасширяющих нервных волокон не доказано.

Спорной остается и теория так называемого антидромного проведения чувствительными нервными волокнами раздражения к мышечным волокнам стенки сосудов.

Факты, доказывающие неравномерное распределение и различное строение чувствительных органов интерорецепции в составе сердечнососудистой системы, положены в основу учения об особо чувствительных рефлексогенных зонах на протяжении кровеносных сосудов. Эту теорию, оправдавшую себя в начальном периоде изучения. интерорецепторов стенки сосудов -- вазорецепторов, следует, однако, подвергнуть переоценке в связи с морфологическими и физиологическими исследованиями последнего времени.

Специальные исследования показали, что разные по виду свободные и снабженные вспомогательными клетками окончания нервных волокон являются хеморецепторами и прессорецепторами органов, в частности, сосудов. На основании обстоятельных морфологических данных можно утверждать, что на протяжении всей сердечно-сосудистой системы нет вообще нерефлексогенных, т. е. лишенных чувствительной иннервации, зон. Как показали многочисленные опыты, с каждой точки сердечнососудистой системы можно получить объективно учитываемую реакцию разной степени в виде рефлекторного типа изменений кровяного давления. В каждой точке сердечно-сосудистой системы соответственными морфологическими методами можно выявить нервные волокна и их окончания той или иной формы и строения.

Строение чувствительных нервных окончаний в сердце и сосудах различно. Различна и их сосредоточенность (густота) на протяжении сердечно-сосудистой системы. Аортокаротидные и рефлексогенные зоны легочной артерии -- самые чувствительные из всех известных. Рефлексы, получаемые при раздражении этих зон, отличаются наибольшей выраженностью и способностью отчетливо и быстро влиять на состояние кровяного давления и дыхания. Сделать же сравнительную оценку такого рода рефлексов, вызываемых с различных частей сердечно-сосудистой системы, не представляется возможным из-за недостаточности соответственных физиологических и морфологических данных.

Кровеносные и лимфоносные сосуды в сумме имеют, как известно, огромную протяженность; поэтому и специальные рецепторные их образования -- вазорепепторы -- составляют самую большую и разнообразную по строению группу среди интерорецепторов вообще.

Несмотря на то, что изучение интерорецепторов находится еще в начальной стадии (данные описательной анатомии еще только накапливаются), все же для дальнейшего планомерного исследования строения и топографии их можно среди неисчислимого множества выделить несколько групп. По строению все известные формы интерорецепторов могут быть разделены на более или менее разветвленные чувствительные нервные окончания, так называемые свободные нервные окончания, и на сложные чувствительные образования с более или менее отчетливо выраженной сумкой и с особой местной их иннервацией и васкуляризацией.

Среди интерорецепторов (и вазорецепторов) следует различать пи форме и сложности строения: а) свободные (неосумкованные) интерорецепторы -- образования, имеющие вид более или менее густых концевых разветвлений нервных волокон между клетками и на клетках тканей, и б) осумкованные интерорецепторы. Среди осумкованных интерорецепторов выделяются две существенно различные по строению группы: а) интерорецепторы обычного -- артерпально-венозного кровообращения и б) интерорецепторы возвратного--артериально-артериального кровообращения.

В. А. Долго-Сабуровым предложена классификация интерорецепторов, основанная на учете анатомо-топографических их признаков: 1) интерстициальные (межуточные) рецепторы, с наличием вспомогательных клеток и без наличия их. 2) мышечные рецепторы -- нервно мышечные веретена и так называемые лазающие волокна. Среди интерстициальных рецепторов особо выделяются рецепторы адвентициальные -- в мышечной, средней оболочке сосуда, субэндотелиальные -- в интиме его.

Литература

Безопасность жизнедеятельности - Запорожец А.И.

http://studbooks.net/50885/bzhd/individualnyy_risk

Страхование - Базилевич ВД

http://pidruchniki.com/

Запорожский Институт Экономики и Информационных Технологий Сливко С.Ф Гражданская оборона

Способы защиты населения в чрезвычайных ситуациях мирного и военного времени

Учебное пособие для самостоятельной подготовки студентов всех специальностей

Официальный сайт Фонда социального страхования от несчастных случаев на производстве и профессиональных заболеваний Украины. http://www.social.org.ua/departaments

Мария Семенченко. О производственном травматизме на Украине / Семенченко М. // Демоскоп Weekly, Электронная версия бюллетеня Население и общество. http://demoscope.ru

Жидецкий В.Ц., Джигирей В.С., Мельников А.В. Основы охраны труда. Учебник. - Изд. 2-е, дополненное. - Львов: Афиша, 2000. - 351 с.

Фещенко Ю.И., Гуменюк Н.И.

Национальный Институт фтизиатрии и пульмонологии им. Ф.Г.Яновского АМН Украины

Размещено на Allbest.ru

Подобные документы

    Учет несчастных случаев на производстве и методы анализа травматизма. Правила расследования несчастных случаев на производстве. Анализ причин несчастных случаев, заболеваний, аварий. Оценка экономического ущерба от производственного травматизма.

    реферат , добавлен 09.01.2011

    Изучение производственного травматизма как категории производственного риска, объединяющей совокупность травм, полученных от несчастных случаев на производстве. Метод оценка риска и анализ динамики несчастных случаев на производстве. Прогноз травматизма.

    курсовая работа , добавлен 21.01.2012

    Причины производственного травматизма, основные методы его профилактики. Виды инструктажей по предупреждению травматизма. Правила электробезопасности. Понятие, виды несчастных случаев, типичные примеры. Причины гибели и травматизма людей на дорогах.

    презентация , добавлен 29.11.2010

    Исследование и анализ причин несчастных случаев являются исходными данными для разработки методов и средств борьбы с травматизмом. Основные причины производственного травматизма, профессиональных заболеваний. Огнегасительные средства и их свойства.

    контрольная работа , добавлен 20.04.2008

    Изучение условий труда и производственного травматизма в сфере строительства. Социальное страхование от несчастных случаев на производстве и профессиональных заболеваний. Выплата пособий по утрате трудоспособности. Анализ затрат на реабилитацию персонала.

    курсовая работа , добавлен 10.12.2013

    Проведения анализа несчастных случаев на предприятиях по статистическим данным. Характеристика динамики промышленного травматизма и меры по его предупреждению. Построение графиков изменения коэффициентов травматизма, тяжести и потерь за последние года.

    реферат , добавлен 02.03.2016

    Особенности производственного травматизма. Виды несчастных случаев на производстве. Проведение механизации, автоматизации и дистанционного управления процессами на территории предприятия. Создание безопасной техники, машин, средств защиты, приспособлений.

    реферат , добавлен 11.02.2015

    Производственный процесс и риск, связанный с исполнением работниками своих трудовых обязанностей. Закон "Об обязательном социальном страховании от несчастных случаев на производстве и профессиональных заболеваниях". Квалификация несчастных случаев.

    презентация , добавлен 25.01.2012

    Экономические значение и основные проблемы охраны труда. Определение эффективности мероприятий и средств профилактики производственного травматизма и профессиональных заболеваний на производстве. Анализ страховых несчастных случаев и профзаболеваний.

    курсовая работа , добавлен 20.04.2015

    Законодательные вопросы охраны труда. Классификация вредных и опасных факторов. Определение производственного травматизма, профзаболеваний. Расследование и учет несчастных случаев, аварий, профессиональных заболеваний. Основы охраны труда женщин.



Copyright © 2024 Информационно-справочная система.